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EXPERIMENTAL RESULTS: DETECTION AND TRACKING OF LOW SNR SINUSOIDS
USING REAL-TIME ILMS AND RLS LATTICE ADAPTIVE LINE ENHANCERS

Terence R. Albert, Hana Abusalem, Michael L. Juniper

Naval Ocean Systems Center
San Diego, CA 92152-5000

ABSTRACT

The structure traditionally used 1in
Adaptive Line Enhancer (ALE) applications is
the transversal filter form of Widrow's
Least Mean Square (LMS) algorithm. It has
been reasoned that an ALE implemented with
the Recursive Least Squares Tattice (RLS
Lattice) Algorithm may offer advantages over
LMS implementations. The expected advantages
include faster convergence, improved track-
ing of dynamic signals, and reduced sen-
sitivity to eigenvalue spread of the input
data's correlation matrix. The work reported
in this paper is a crmparison of the detec-
tion and tracking performance of ALEs imple-
mented with the traditional ILMS Transversal
and the RLS Lattice algorithms. This com-
parison 1is based on experimental results
obtained from a real-time custom hardware
system wusing 32-bit IEEE floating point
format operating on stationary and non-
stationary sinusoids with added broadband
noise.

I. INTRODUCTION

A real-time adaptive filter test plat-
form, called the Lattice Development System
(LDS), was designed and built at the Naval
Ocean System Center (NOSC) to support per-
formance and behavior testing of adaptive
lattice and adaptive transversal algorithms.
Of particular interest are arithmetic and
quantizing related stability questions and
the interactions between filter length and
time constant of exponential memory when
tracking non-stationary signals. The LDS
consists of pipelined microprogrammable
Engine Boards performing 32-bit IEEE float-
ing point arithmetic along with a Control
Board which supports analog and digital
input/output (I/0) during processing. The
system analog converters have 16-bit resolu-
tion. The architecture and design of the LDS
aredescribed in ([1]. All results reported
here were obtained from ALEs implemented on
this system.

This paper focuses on the detection and
tracking capabilities of low Signal to Noise
Ratio (SNR) sinusoids by ALEs implemented

g "‘Z&vi;ﬁt'

with the RLS lattice and the LMS transversal
algorithms. While the performance of the IMS
transversal algorithm is well documented [6-
9] and to a lesser extent so is the perfor-
mance of the RLS transversal algorithm [10],
there is very little published on the per-
formance of the RLS Lattice. This is due in
part to the algorithm complexity which makes
the implementation and analysis arduous.

Test conditions under which data were
collected and processed is first described
and then experimental results for stationary
sinusoids in noise as well as for slowly
varying sinusoids in noise are shown. Com-
parisons between LMS transversal and RLS
Lattice algorithms are made along with their
theoretical gains. Of particular interest
for the non-stationary signal are the relat-~
ionships between reliable detection for low
SNR sinusoids and filter parameters such as
filter length, and adaption speed as con-
trolled by step size u (LMS) or exponential
decay factor (1-W) (RLS Lattice).

IXI. EXPERIMENTAL METHOD

Figure 1. is a block diagram of the ALE
and the measurement arrangement identifying
the primary input d(n), filter output y(n),
and prediction error output e(n). As indi-
cated, the input signal to the ALE is ob-
tained as the sum of a synthesized sinusoid
and filtered white noise. Input signal and
noise levels are measured separately prior
to summing, and are verified after summing
with an FFT spectrum analyzer. Output signal
and noise levels are determined with the
spectrum analyzer and are presented as the
ratio of signal powver to noise power in an
equivalent one-Hz bandwidth in units of
dB/Hz.

The noise is bandlimited to 50 Hz by
cascaded second order Butterworth filters
and the composite signal is sampled at 140
S/S. Each test is conducted for a fixed time
interval to permit the algorithms to achieve
steady state performance after which 32
transforms of length 2048 points are formed
and averaged to obtain stable spectral esti-
mates.
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FIGURE 1. ADAPTIVE LINE ENHANCER
TEST AND MEASUREMENT ARRANGEMENT

Figure 2a presents typical spectra ob-
tained from an LMS transversal ALE for
filters of length 16, 64, and 600 respec-
tively. Figure 2b presents typical spectra
obtained from an RLS Lattice ALE of the same
lengths. The signal used for this example is
a stationary sinusoid at 25 Hz with 0-db
SNR. The convergence parameter p used in the
IMS algorithm is 2°'% and the fading memory
factor W used in the RLS Lattice algorithm
is 0.99995.

Note the expected improvement in spect-
ral fidelity of the ALE output spectral
fidelity and with increased filter length
for both IMS and RLSL algorithms and note
the improved spectral fidelity and detection
of the sinusoid for the short RLS filters
over the same length ILMS filter.
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FIGURE 2. SPECTRA OBTAINED FROM ALEs FOR
FILTERS OF LENGTH 16, 64, AMC. 7CC USINS LM
Alibu RLS LATTICE ALGORITHMS

Minimum detectable signal level for
non-stationary sinusoids was determined by
eye integration across a waterfall display
consisting of successive spectral power
estimates obtained from the spectrum
analyzer. Reliable estimates were identified
as a non-ambiguous trace on the CRT with
signal components exceeding background noise
over at least 50% of the spectral estimates.

III. PERFORMANCE FOR STATIONARY SINUSOID

The theoretical narrowband (NB) signal
ampliude gain [6,7,8,9) for the LMS algo-
rithm is presented in (1).

= (L/2) *SNR (1)
NB GAIN = =773 (L/2) *SNR

Figure 3. presents a curve of this relation-
ship along with the measured performance of
three different ALEs. These are the IMS
transversal [5], the RLS Lattice [2,3), and
the Direct Coefficient Update RLS lattice
[4]. The filters were each of length 600
(taps or stages) and the appropriate conver-
gence factors or fading memory terms are
indicated on the figure. As can be seen, the
experimental data fits the theoretical curve
within reasonable tolerances.

- Theoretical LMS

~ LMS Mu=2"-10

-- RLS W=0.999Y§

NARROW BAND SIGNAL GAIN (dB)
-

. DUPL W=(,99998

s 10 -5 0 s
INPUT SNR (dB/H.)

FIGURE 3. THEORETICAL ALE NARROWBAND AMPLI-

TUDE GAIN FOR LMS, MEASURED GAIN FOR LMS

TRANSVERSAL, RLS LATTICE , AND DIRECT COEF-
FICIENT UPDATING LATTICE (DUPL)

The theoretical
power gain for the LMS ALE
given in (2).

output noise
(6,7,8,9] is

NOISE GAIN = pu * L * ¢ (2)

where o is the input noise power. A similar
closed form expression does not exist for
the RLS Lattice filter. Figure 4. presents a
compariscn of broadband noise reduction of
the ALE implemented with the LMS and the RLS
Lattice algorithms as a function of filter
length (L) for the indicated values of u and
W. The curves indicate that a rela+ti-nchip
Calsis belweel Llle memory term (1-W) and the
filter length for the RLS lattice similar to




that indicated in (2) between the conver-
gence factor g and the filter length of the
IMS transversal algorithm.

Note that the RLS Lattice filter with
parameter W = 0.99995 (with bandwidth 2 (1-W)
= 10“) exhibits nearly the same performance
as the IMS filter with parameter g = 2° (or
107%). Thus, there appears to be an order of
magnitude differcnce in the influence of the
parameters u and 2(1-W).
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FIGURE 4. ALE BROADBAND NOISE REDUCTION WITH
FILTER LENGTH FOR LMS TRANSVERSAL (u = 278,

512

2°'%) AND RLS LATTICE (W = 0.9999, 0.99995)
ALGORITHMS
IV. PERFORMANCE FOR NON-STATIONARY SINUSOID

The two versions of the ALE were tested
with sinuscids exhibiting linear FM slope to
determine 'and compare the minimum detectable
SNR of the filters. Filter lengths of 600
and 1200 (taps or stages) were used in the
ALE. The ALE output was then processed by a
fixed length spectrum analyzer with band-
width adjusted to match the spectral resol-
ution of the ALE. The sweep rate of the
linear FM sweeps, normalized to the resolu-
tion of the analyzer, is presented in units
of bins per 10,000 samples.

Figures 5a and Sb show the relationship
between minimum input SNR for reliable fre-
qguency tracking and input sweep rate for IMS
filters of length 600 and 1200 respectively.
Note the general increase in required SNR as
the input sweep rate increases. It is appar-
ent that the long filter exhibits nearly a
3-dB advantage over the short filter and
that for the longer filter the SNR is essen-
tially independent of the algorithm's con-
vergence factor u for the range shown.

Figures 6a and éb show the relationship
between minimum input SNR for reliable fre-
quency tracking and input sweep rate for RLS
Lattice filters of length 600 and 1200
respectively. !..-re we note the same increase
in required SNR as the inout sweep rate in-
cr~--~es with approximately the same raie of
increase for the shorter filteq but at a
reduced rate of increase for the long fil-
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ter. Here the long filter not only exhibits
the 3-dB advantage over the short filter
described earlier but an additional 3-dB
advantage for the higher sweep rates rela-
tive to the IMS algorithm of the same filter
length. For stationary sinusoids, the IMS
algorithm has a 2 to 3 dB advantage for
length 1200.

V. CONCLUSBIONS

Narrowband gain for stationary inputs
was measured for the IMS transversal filter
ancd for two forms of the RLS Lattice filter.
They were found to be the same within reas-
onable measurement criteria and agreed with
the theoretical gain of the IMS ALE. For
stationary signals the performance of the
RLS Lattice exhibits similar variation with
filter length L and memory fade factor (1-W)
as does the IMS algorithm. For non-station-
ary signals, the IMS and the RLS Lattice
algorithms perform the same for short fil-
ters and small FM sweep rates. For longer
filters and for higher sweep rates, the RLS
Lattice exhibits approximately a 3-dB advan-
tage over the IMS algorithm. This advantage
is expected due to the rapid convergence
capabilities of the RLS Lattice structure.
It is, however, 2 to 3 dB poorer for detect-
ing stationary sinusoids with long filter
lengths.

We also note that the RLS Lattice did
not exhibit the numerical instablitity of
the form observed and reported by others
{11] for RLS transversal structures.
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ABSTRACT

The performance of adaptive noise cancellers implemented with
lattice algorithms is degraded by finite arithmetic effects, especiaily
as the value of the exponential windowing parameter approaches unity.
This degradation can be avoided if the window parameter value is kept ‘
within a certain range, and if the lattice has a properly implemented i
order expansion/contraction control mechanism. The region in parameter
space where one can expect good cancellation of sinusoidal and random
(broad-band) interference using 32-bit floating point arithmetic is i
defined.




